T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences.

نویسندگان

  • Pieter Windels
  • Sylvie De Buck
  • Erik Van Bockstaele
  • Marc De Loose
  • Ann Depicker
چکیده

To investigate the relationship between T-DNA integration and double-stranded break (DSB) repair in Arabidopsis, we studied 67 T-DNA/plant DNA junctions and 13 T-DNA/T-DNA junctions derived from transgenic plants. Three different types of T-DNA-associated joining could be distinguished. A minority of T-DNA/plant DNA junctions were joined by a simple ligation-like mechanism, resulting in a junction without microhomology or filler DNA insertions. For about one-half of all analyzed junctions, joining of the two ends occurred without insertion of filler sequences. For these junctions, microhomology was strikingly combined with deletions of the T-DNA ends. For the remaining plant DNA/T-DNA junctions, up to 51-bp-long filler sequences were present between plant DNA and T-DNA contiguous sequences. These filler segments are built from several short sequence motifs, identical to sequence blocks that occur in the T-DNA ends and/or the plant DNA close to the integration site. Mutual microhomologies among the sequence motifs that constitute a filler segment were frequently observed. When T-DNA integration and DSB repair were compared, the most conspicuous difference was the frequency and the structural organization of the filler insertions. In Arabidopsis, no filler insertions were found at DSB repair junctions. In maize (Zea mays) and tobacco (Nicotiana tabacum), DSB repair-associated filler was normally composed of simple, uninterrupted sequence blocks. Thus, although DSB repair and T-DNA integration are probably closely related, both mechanisms have some exclusive and specific characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Illegitimate recombination in plants: a model for T-DNA integration.

Agrobacterium tumefaciens is a soil bacterium capable of transferring DNA (the T-DNA) to the genome of higher plants, where it is then stably integrated. Six T-DNA inserts and their corresponding preinsertion sites were cloned from Arabidopsis thaliana and analyzed. Two T-DNA integration events from Nicotiana tabacum were included in the analysis. Nucleotide sequence comparison of plant target ...

متن کامل

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca.

Reverse genetics is used for functional genomics research in model plants. To establish a model system for the systematic reverse genetics research in the Rosaceae family, we analyzed genomic DNA flanking the T-DNA insertions in 191 transgenic plants of the diploid strawberry, Fragaria vesca. One hundred and seventy-six T-DNA flanking sequences were amplified from the right border (RB) and 37 f...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome.

In both applied and basic research, Agrobacterium-mediated transformation is commonly used to introduce genes into plants. We investigated the effect of three Agrobacterium tumefaciens strains and five transferred (T)-DNA origins of replication on transformation frequency, transgene copy number, and the frequency of integration of non-T-DNA portions of the T-DNA-containing vector (backbone) int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2003